Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Generative AI: The Future of Creativity, Powered by IPU and GPU

Generative AI: The Future of Creativity, Powered by IPU and GPU

  • By Gcore
  • September 18, 2023
  • 8 min read
Generative AI: The Future of Creativity, Powered by IPU and GPU

In this article, we explore how Intelligence Processing Units (IPUs) and graphics processing units (GPUs) drive the rapid evolution of generative AI. You’ll learn how generative AI works, how IPU and GPU help in its development, what’s important when choosing AI infrastructure, and you’ll see generative AI projects by Gcore.

What Is Generative AI?

Generative AI, or GenAI, is artificial intelligence that can generate content in response to users’ prompts. The content types generated include text, images, audio, video, and code. The goal is for the generated content to be human-like, suitable for practical use, and to correspond with the prompt as much as possible. GenAI is trained by learning patterns and structures from input data and then utilizing that knowledge to generate new and unique outputs.

Here are a few examples of the GenAI tools with which you may be familiar:

  • ChatGPT is an AI chatbot that can communicate with humans and write high-quality text and code. It has been taught using vast quantities of data available on the internet.
  • DALL-E 2 is an AI image generator that can create images from text descriptions. DALL-E 2 has been trained on a large set of images and text, producing images that look lifelike and attractive.
  • Whisper is a speech-to-text AI system that can identify, translate, and transcribe 57 languages (a number that continues to grow.) It has been trained on 680,000 hours of multilingual data. This is a GenAI example in which accuracy is more important than creativity.

GenAI has potential applications in various fields. According to the 2023 McKinsey survey of different industries, marketing and sales, product and service development, and service operations are the most commonly reported uses of GenAl this year.

Popular Generative AI Tools

The table below shows examples of different Generative AI tools: chatbots, text-to-image generators, text-to-video generators, speech-to-text generators, and text-to-code generators. Some of them are already mature whereas others are still in beta testing (as marked on the table) but look promising.

GenAI typeApplicationsEngines/ModelsAccessDeveloper
ChatbotsChatGPTGPT-3.5, GPT-4Free, paidOpenAI
Bard BetaLaMDAFreeGoogle
Bing ChatGPT-4FreeMicrosoft
Text-to-image generatorsDALL-E 2 BetaGPT-3, CLIPFreeOpenAI
Midjourney BetaLLMPaidMidjourney
Stable DiffusionLDM, CLIPFreeStability AI
Text-to-video generatorsPika Labs BetaUnknownFreePika Labs
Gen-2LDMPaidRunaway
Imagen Video BetaCDM, U-NetN/AGoogle
Speech-to-text generatorsWhisperCustom GPTFreeOpenAI
Google Cloud Speech-to-TextConformer Speech Model technologyPaidGoogle
DeepgramCustom LLMPaidDeepgram
Text-to-code generatorsGitHub CopilotOpenAI CodexPaidGitHub, OpenAI
Amazon CodeWhispererUnknownFree, paidAmazon
ChatGPTGPT-3.5, GPT-4Free, paidOpenAI

These GenAI tools require specialized AI infrastructure, such as servers with IPU and GPU modules, to train and function. We will discuss IPUs and GPUs later. First, let’s understand how GenAI works on a higher level.

How Does Generative AI Work?

A GenAI system learns structures and patterns from a given dataset of similar content, such as massive amounts of text, photos, or music; for example, ChatGPT was trained on 570 GB of data from books, websites, research articles, and other forms of content available on the internet. According to ChatGPT itself, this is the equivalent of approximately 389,120 full-length eBooks in ePub format! Using that knowledge, the GenAI system then creates new and unique results. Here is a simplified illustration of this process:

Figure 1: A simplified process of how GenAI works

Let’s look at two key phases of how GenAI works: training GenAI on real data and generating new data.

Training on Real Data

To learn patterns and structures, GenAI systems utilize different types of machine learning and deep learning techniques, most commonly neural networks. A neural network is an algorithm that mimics the human brain to create a system of interconnected nodes that learn to process information by changing the weights of the connections between them. The most popular neural networks are GANs and VAEs.

Generative adversarial networks (GANs)

Generative adversarial networks (GANs) are a popular type of neural network used for GenAI training. Image generators DALL-E 2 and Midjourney were trained using GANs.

GANs operate by setting two neural networks against one another:

  • The generator produces new data based on the given real data set.
  • The discriminator determines whether the newly generated data is genuine or artificially generated, i.e., fake.

The generator tries to fool the discriminator. The ultimate goal is to generate data that the discriminator can’t distinguish from real data.

Variational autoencoders (VAEs)

Variational autoencoders (VAEs) are another well-known type of neural network used for image, text, music, and other content generation. The image generator Stable Diffusion was trained mostly using VAEs.

VAEs consist of two neural networks:

  • The encoder receives training data, such as a photo, and maps it to a latent space. Latent space is a lower dimensional representation of the data that captures the essential features of the input data.
  • The decoder analyzes the latent space and generates a new data sample, e.g., a photo imitation.

Comparing GANs and VAEs

Here are the basic differences between VAEs and GANs:

  • VAEs are probabilistic models, meaning they can generate new data that is more diverse than GANs.
  • VAEs are easier to train but don’t generally produce as high-quality images as GANs. GANs can be more difficult to work with but produce better photo-realistic images.
  • VAEs work better for signal processing use cases, such as anomaly detection for predictive maintenance or security analytics applications, while GANs are better at generating multimedia.

To get more efficient AI models, developers often train them using combinations of different neural networks.The entire training process can take minutes to months, depending on your goals, dataset, and resources.

Generating New Data

Once a generative AI tool has completed its training, it can generate new data; this stage is called inference. A user enters a prompt to generate the content, such as an image, a video, or a text. The GenAI system produces new data according to the user’s prompt.

For the most relevant results, it is ideal to train generative AI systems with a focus on a particular area. As a crude example, if you want a GenAI system to produce high-quality images of kangaroos, it’s best to train the system on images of kangaroos rather than on all existing animals. That’s why gathering relevant data to train AI models is one of the key challenges. This requires the tight collaboration of subject matter experts and data scientists.

How IPU and GPU Help to Develop Generative AI

There are two primary options when it comes to how you develop a generative AI system. You can utilize a prebuilt AI model and fine-tune it to your needs, or embark on the ambitious journey of training an AI model from the ground up. Regardless of your approach, access to AI infrastructure—IPU and GPU servers—is indispensable. There are two main reasons for this:

  • GPU and IPU architectures are adapted for AI workloads
  • GPU and IPU are available in the Cloud

Adapted Architecture

Intelligence Processing Units (IPUs) and graphics processing units (GPUs) are specialized hardware designed to accelerate the training and inference of AI models, including models for GenAI training. Their main advantage is that each IPU or GPU module has thousands of cores simultaneously processing data. This makes them ideal for parallel computing, essential in AI training.

As a result, GPUs are usually better deep learning accelerators than, for example, CPUs, which are suitable for sequential tasks but not parallel processing. While the server version of the CPU can have a maximum of 128 cores, a processor in the IPU, for example, has 1472 cores.

Here are the basic differences between GPUs and IPUs:

  • GPUs were initially designed for graphics processing, but their efficient parallel computation capabilities also make them well-suited for AI workloads. GPUs are the ideal choice for training and inference ML models. There are several AI-focused GPU hardware vendors on the market, but the clear leader is NVIDIA.
  • IPUs are a newer type of hardware designed specifically for AI workloads. They are even more efficient than GPUs at performing parallel computations. IPUs are ideal for training and deploying the most sophisticated AI applications, like large language models (LLMs.) Graphcore is the developer and sole vendor of IPUs, but there are some providers, like Gcore, that offer Graphcore IPUs in the cloud.

Availability in the Cloud

Typically, even enterprise-level AI developers don’t buy physical IPU/GPU servers because they are extremely expensive, costing up to $270,000. Instead, developers rent virtual and bare metal IPU/GPU instances from cloud providers on a per-minute or per-hour basis. This is also more convenient because AI training is an iterative process. When you need to run the next training iteration, you rent a server or virtual machine and pay only for the time you actually use it. The same applies to deploying a trained GenAI system for user access: You’ll need the parallel processing capabilities of IPUs/GPUs for better inference speed when generating new data, so you have to either buy or rent this infrastructure.

What’s Important When Choosing AI Infrastructure?

When choosing AI infrastructure, you should consider which type of AI accelerator better suits your needs in terms of performance and cost.

GPUs are usually an easier way to train models since there are a lot of prebuilt frameworks adapted for GPUs, including PyTorch, TensorFlow, and PaddlePaddle. NVIDIA also offers CUDA for its GPUs; this is a parallel computing software that works perfectly with programming languages widely used in AI development, like C and C++. As a result, GPUs are more suitable if you don’t have deep knowledge of AI training and fine-tuning, and want to get results faster using prebuilt AI models.

IPUs are better than GPUs for complex AI training tasks because they were designed specifically for that task, not for video rendering, for example, as GPUs were originally designed to do. However, due to its newness, IPUs support fewer prebuilt AI frameworks out-of-the-box than GPUs. When you are trying to perform a novel AI training task and therefore don’t have a prebuilt framework, you need to adapt an AI framework or AI model and even write code from scratch to run it. All of this requires technical expertise. However, Graphcore is actively developing SDKs and instructions to ease the use of their hardware.

Graphcore’s IPUs also support packing, a technique that significantly reduces the time required to pre-train, fine-tune, and infer from LLMs. Below is an example of how IPUs excel GPUs in inference for a language learning model based on the BERT architecture when using packing.

Figure 2: IPU outperforms GPU in inference for a BERT-flavored LLM when using packing

Cost-effectiveness is another important consideration when choosing an AI infrastructure. Look for benchmarks that compare AI accelerators in terms of performance per dollar/euro. This can help you to identify efficient choices by finding the right balance between price and compute power, and could save you a lot of money if you plan a long-term project.

Understanding the potential costs of renting AI infrastructure helps you to plan your budget correctly. Research the prices of cloud providers and calculate how much a specific server with a particular configuration will cost you per minute, hour, day, and so on. For more accurate calculations, you need to know the approximate time you’ll need to spend on training. This requires some mathematical effort, especially if you’re developing a GenAI model from scratch. To estimate the training time, you can count the number of operations needed or look at the GPU time.

Our Generative AI Projects

Gcore’s GenAI projects offer powerful examples of the fine-tuning approach to AI training, using IPU infrastructure.

English to Luxembourgish Translation Service

Gcore’s speech-to-text AI service translates English speech into Luxembourgish text on the go. The tool is based on the Whisper neural network and has been fine-tuned by our AI developers.

Figure 3: The UI of Gcore’s speech-to-text AI service

The project is an example of fine-tuning an existing speech-to-text GenAI model when it doesn’t support a specific language. The base version of Whisper didn’t support Luxembourgish, so our developers had to train the model to help Whisper learn this skill. A GenAI tool with any local or rare language not supported by existing LLMs could be created in the same way.

AI Image Generator

Al Image Generator is a generative AI tool free for all users registered to the Gcore Platform. It takes your text prompts and creates images of different styles. To develop the Image Generator, we used the prebuilt Openjourney GenAI model. We fine-tuned it using datasets for specific areas, such as gaming, to extend its capabilities and generate a wider range of images. Like our speech-to-text service, the Image Generator is powered by Gcore’s AI IPU infrastructure.

Figure 4: Image examples generated by Gcore’s AI Image Generator

The AI Image Generator is an example of how GenAI models like Openjourney can be customized to generate data with the style and context you need. The main problem with a pretrained model is that it is typically trained on large datasets and may lack accuracy when you need more specific results, like a highly specific stylization. If the prebuilt model doesn’t produce content that matches your expectations, you can collect a more relevant dataset and train your model to get more accurate results, which is what we did at Gcore. This approach can save significant time and resources, as it doesn’t require training the model from scratch.

Future Gcore AI Projects

Here’s what’s in the works for Gcore AI:

  • Custom AI model tuning will help to develop AI models for different purposes and projects. A customer can provide their dataset to train a model for their specific goal. For example, you’ll be able to generate graphics and illustrations according to the company’s guidelines, which can reduce the burden on designers.
  • AI models marketplace will provide ready-made AI models and frameworks in Gcore Cloud, similar to how our Cloud App Marketplace provides prebuilt cloud applications. Customers will be able to deploy these AI models on Virtual Instances or Bare Metal servers with GPU and IPU modules and either use these models as they are or fine-tune them for specific use cases.

Conclusion

IPUs and GPUs are fundamental to parallel processing, neural network training, and inference. This makes such infrastructure essential for generative AI development. However, GenAI developers need to have a clear understanding of their training goals. This will allow them to utilize the AI infrastructure properly, achieving maximum efficiency and best use of resources.

Try IPU for free

Related articles

How gaming studios can use technology to safeguard players

Online gaming can be an enjoyable and rewarding pastime, providing a sense of community and even improving cognitive skills. During the pandemic, for example, online gaming was proven to boost many players’ mental health and provided a vital social outlet at a time of great isolation. However, despite the overall benefits of gaming, there are two factors that can seriously spoil the gaming experience for players: toxic behavior and cyber attacks.Both toxic behavior and cyberattacks can lead to players abandoning games in order to protect themselves. While it’s impossible to eradicate harmful behaviors completely, robust technology can swiftly detect and ban bullies as well as defend against targeted cyberattacks that can ruin the gaming experience.This article explores how gaming studios can leverage technology to detect toxic behavior, defend against cyber threats, and deliver a safer, more engaging experience for players.Moderating toxic behavior with AI-driven technologyToxic behavior—including harassment, abusive messages, and cheating—has long been a problem in the world of gaming. Toxic behavior not only affects players emotionally but can also damage a studio’s reputation, drive churn, and generate negative reviews.The online disinhibition effect leads some players to behave in ways they may not in real life. But even when it takes place in a virtual world, this negative behavior has real long-term detrimental effects on its targets.While you can’t control how players behave, you can control how quickly you respond.Gaming studios can implement technology that makes dealing with toxic incidents easier and makes gaming a safer environment for everyone. While in the past it may have taken days to verify a complaint about a player’s behavior, today, with AI-driven security and content moderation, toxic behavior can be detected in real time, and automated bans can be enforced. The tool can detect inappropriate images and content and includes speech recognition to detect derogatory or hateful language.In gaming, AI content moderation analyzes player interactions in real time to detect toxic behavior, harmful content, and policy violations. Machine learning models assess chat, voice, and in-game media against predefined rules, flagging or blocking inappropriate content. For example, let’s say a player is struggling with in-game harassment and cheating. With AI-powered moderation tools, chat logs and gameplay behavior are analyzed in real time, identifying toxic players for automated bans. This results in healthier in-game communities, improved player retention, and a more pleasant user experience.Stopping cybercriminals from ruining the gaming experienceAnother factor negatively impacting the gaming experience on a larger scale is cyberattacks. Our recent Radar Report showed that the gaming industry experienced the highest number of DDoS attacks in the last quarter of 2024. The sector is also vulnerable to bot abuse, API attacks, data theft, and account hijacking.Prolonged downtime damages a studio’s reputation—something hackers know all too well. As a result, gaming platforms are prime targets for ransomware, extortion, and data breaches. Cybercriminals target both servers and individual players’ personal information. This naturally leads to a drop in player engagement and widespread frustration.Luckily, security solutions can be put in place to protect gamers from this kind of intrusion:DDoS protection shields game servers from volumetric and targeted attacks, guaranteeing uptime even during high-profile launches. In the event of an attack, malicious traffic is mitigated in real-time, preventing zero downtime and guaranteeing seamless player experiences.WAAP secures game APIs and web services from bot abuse, credential stuffing, and data breaches. It protects against in-game fraud, exploits, and API vulnerabilities.Edge security solutions reduce latency, protecting players without affecting game performance. The Gcore security stack helps ensure fair play, protecting revenue and player retention.Take the first steps to protecting your customersGaming should be a positive and fun experience, not fraught with harassment, bullying, and the threat of cybercrime. Harmful and disruptive behaviors can make it feel unsafe for everyone to play as they wish. That’s why gaming studios should consider how to implement the right technology to help players feel protected.Gcore was founded in 2014 with a focus on the gaming industry. Over the years, we have thwarted many large DDoS attacks and continue to offer robust protection for companies such as Nitrado, Saber, and Wargaming. Our gaming specialization has also led us to develop game-specific countermeasures. If you’d like to learn more about how our cybersecurity solutions for gaming can help you, get in touch.Speak to our gaming solutions experts today

Gcore and Northern Data Group partner to transform global AI deployment

Gcore and Northern Data Group have joined forces to launch a new chapter in enterprise AI. By combining high-performance infrastructure with intelligent software, the commercial and technology partnership will make it dramatically easier to deploy AI applications at scale—wherever your users are. At the heart of this exciting new partnership is a shared vision: global, low-latency, secure AI infrastructure that’s simple to use and ready for production.Introducing the Intelligence Delivery NetworkAI adoption is accelerating, but infrastructure remains a major bottleneck. Many enterprises discover blockers regarding latency, compliance, and scale, especially when deploying models in multiple regions. The traditional cloud approach often introduces complexity and overhead just when speed and simplicity matter most.That’s where the Intelligence Delivery Network (IDN) comes in.The IDN is a globally distributed AI network built to simplify inference at the edge. It combines Northern Data’s state-of-the-art infrastructure with Gcore Everywhere Inference to deliver scalable, high-performance AI across 180 global points of presence.By locating AI workloads closer to end users, the IDN reduces latency and improves responsiveness—without compromising on security or compliance. Its geo-zoned, geo-balanced architecture ensures resilience and data locality while minimizing deployment complexity.A full AI deployment toolkitThe IDN is a full AI deployment toolkit built on Gcore’s cloud-native platform. The solution offers a vertically integrated stack designed for speed, flexibility, and scale. Key components include the following:Managed Kubernetes for orchestrationA container-based deployment engine (Docker)An extensive model library, supporting open-source and custom modelsEverywhere Inference, Gcore’s software for distributing inferencing across global edge points of presenceThis toolset enables fast, simple deployments of AI workloads—with built-in scaling, resource management, and observability. The partnership also unlocks access to one of the world’s largest liquid-cooled GPU clusters, giving AI teams the horsepower they need for demanding workloads.Whether you’re building a new AI-powered product or scaling an existing model, the IDN provides a clear path from development to production.Built for scale and performanceThe joint solution is built with the needs of enterprise customers in mind. It supports multi-tenant deployments, integrates with existing cloud-native tools, and prioritizes performance without sacrificing control. Customers gain the flexibility to deploy wherever and however they need, with enterprise-grade security and compliance baked in.Andre Reitenbach, CEO of Gcore, comments, “This collaboration supports Gcore’s mission to connect the world to AI anywhere and anytime. Together, we’re enabling the next generation of AI applications with low latency and massive scale.”“We are combining Northern Data’s heritage of HPC and Data Center infrastructure expertise, with Gcore’s specialization in software innovation and engineering.” says Aroosh Thillainathan, Founder and CEO of Northern Data Group. “This allows us to accelerate our vision of delivering software-enabled AI infrastructure across a globally distributed compute network. This is a key moment in time where the use of AI solutions is evolving, and we believe that this partnership will form a key part of it.”Deploy AI smarter and faster with Gcore and Northern Data GroupAI is the new foundation of digital business. Deploying it globally shouldn’t require a team of infrastructure engineers. With Gcore and Northern Data Group, enterprise teams get the tools and support they need to run AI at the edge at scale and at speed.No matter what you and your teams are trying to achieve with AI, the new Intelligence Delivery Network is built to help you deploy smarter and faster.Read the full press release

How to achieve compliance and security in AI inference

AI inference applications today handle an immense volume of confidential information, so prioritizing data privacy is paramount. Industries such as finance, healthcare, and government rely on AI to process sensitive data—detecting fraudulent transactions, analyzing patient records, and identifying cybersecurity threats in real time. While AI inference enhances efficiency, decision-making, and automation, neglecting security and compliance can lead to severe financial penalties, regulatory violations, and data breaches. Industries handling sensitive information—such as finance, healthcare, and government—must carefully manage AI deployments to avoid costly fines, legal action, and reputational damage.Without robust security measures, AI inference environments present a unique security challenge as they process real-time data and interact directly with users. This article explores the security challenges enterprises face and best practices for guaranteeing compliance and protecting AI inference workloads.Key inference security and compliance challengesAs businesses scale AI-powered applications, they will likely encounter challenges in meeting regulatory requirements, preventing unauthorized access, and making sure that AI models (whether proprietary or open source) produce reliable and unaltered outputs.Data privacy and sovereigntyRegulations such as GDPR (Europe), CCPA (California), HIPAA (United States, healthcare), and PCI DSS (finance) impose strict rules on data handling, dictating where and how AI models can be deployed. Businesses using public cloud-based AI models must verify that data is processed and stored in appropriate locations to avoid compliance violations.Additionally, compliance constraints restrict certain AI models in specific regions. Companies must carefully evaluate whether their chosen models align with regulatory requirements in their operational areas.Best practices:To maintain compliance and avoid legal risks:Deploy AI models in regionally restricted environments to keep sensitive data within legally approved jurisdictions.Use Smart Routing with edge inference to process data closer to its source, reducing cross-border security risks.Model security risksBad actors can manipulate AI models to produce incorrect outputs, compromising their reliability and integrity. This is known as adversarial manipulation, where small, intentional alterations to input data can deceive AI models. For example, researchers have demonstrated that minor changes to medical images can trick AI diagnostic models into misclassifying benign tumors as malignant. In a security context, attackers could exploit these vulnerabilities to bypass fraud detection in finance or manipulate AI-driven cybersecurity systems, leading to unauthorized transactions or undetected threats.To prevent such threats, businesses must implement strong authentication, encryption strategies, and access control policies for AI models.Best practices:To prevent adversarial attacks and maintain model integrity:Enforce strong authentication and authorization controls to limit access to AI models.Encrypt model inputs and outputs to prevent data interception and tampering.Endpoint protection for AI deploymentsThe security of AI inference does not stop at the model level. It also depends on where and how models are deployed.For private deployments, securing AI endpoints is crucial to prevent unauthorized access.For public cloud inference, leveraging CDN-based security can help protect workloads against cyber threats.Processing data within the country of origin can further reduce compliance risks while improving latency and security.AI models rely on low-latency, high-performance processing, but securing these workloads against cyber threats is as critical as optimizing performance. CDN-based security strengthens AI inference protection in the following ways:Encrypts model interactions with SSL/TLS to safeguard data transmissions.Implements rate limiting to prevent excessive API requests and automated attacks.Enhances authentication controls to restrict access to authorized users and applications.Blocks bot-driven threats that attempt to exploit AI vulnerabilities.Additionally, CDN-based security supports compliance by:Using Smart Routing to direct AI workloads to designated inference nodes, helping align processing with data sovereignty laws.Optimizing delivery and security while maintaining adherence to regional compliance requirements.While CDNs enhance security and performance by managing traffic flow, compliance ultimately depends on where the AI model is hosted and processed. Smart Routing allows organizations to define policies that help keep inference within legally approved regions, reducing compliance risks.Best practices:To protect AI inference environments from endpoint-related threats, you should:Deploy monitoring tools to detect unauthorized access, anomalies, and potential security breaches in real-time.Implement logging and auditing mechanisms for compliance reporting and proactive security tracking.Secure AI inference with Gcore Everywhere InferenceAI inference security and compliance are critical as businesses handle sensitive data across multiple regions. Organizations need a robust, security-first AI infrastructure to mitigate risks, reduce latency, and maintain compliance with data sovereignty laws.Gcore’s edge network and CDN-based security provide multi-layered protection for AI workloads, combining DDoS protection and WAAP (web application and API protection. By keeping inference closer to users and securing every stage of the AI pipeline, Gcore helps businesses protect data, optimize performance, and meet industry regulations.Explore Gcore AI Inference

Mobile World Congress 2025: the year of AI

As Mobile World Congress wrapped up for another year, it was apparent that only one topic was on everyone’s minds: artificial intelligence.Major players—such as Google, Ericsson, and Deutsche Telekom—showcased the various ways in which they’re piloting AI applications—from operations to infrastructure management and customer interactions. It’s clear there is a great desire to see AI move from the research lab into the real world, where it can make a real difference to people’s everyday lives. The days of more theoretical projects and gimmicky robots seem to be behind us: this year, it was all about real-world applications.MWC has long been an event for telecommunications companies to launch their latest innovations, and this year was no different. Telco companies demonstrated how AI is now essential in managing network performance, reducing operational downtime, and driving significant cost savings. The industry consensus is that AI is no longer experimental but a critical component of modern telecommunications. While many of the applications showcased were early-stage pilots and stakeholders are still figuring out what wide-scale, real-time AI means in practice, the ambition to innovate and move forward on adoption is clear.Here are three of the most exciting AI developments that caught our eye in Barcelona:Conversational AIChatbots were probably the key telco application showcased across MWC, with applications ranging from contact centers, in-field repairs, personal assistants transcribing calls, booking taxis and making restaurant reservations, to emergency responders using intelligent assistants to manage critical incidents. The easy-to-use, conversational nature of chatbots makes them an attractive means to deploy AI across functions, as it doesn’t require users to have any prior hands-on machine learning expertise.AI for first respondersEmergency responders often rely on telco partners to access novel, technology-enabled solutions to address their challenges. One such example is the collaboration between telcos and large language model (LLM) companies to deliver emergency-response chatbots. These tailored chatbots integrate various decision-making models, enabling them to quickly parse vast data streams and suggest actionable steps for human operators in real time.This collaboration not only speeds up response times during critical situations but also enhances the overall effectiveness of emergency services, ensuring that support reaches those in need faster.Another interesting example in this field was the Deutsche Telekom drone with an integrated LTE base station, which can be deployed in emergencies to deliver temporary coverage to an affected area or extend the service footprint during sports events and festivals, for example.Enhancing Radio Access Networks (RAN)Telecommunication companies are increasingly turning to advanced applications to manage the growing complexity of their networks and provide high-quality, uninterrupted service for their customers.By leveraging artificial intelligence, these applications can proactively monitor network performance, detect anomalies in real time, and automatically implement corrective measures. This not only enhances network reliability but reduces operational costs and minimizes downtime, paving the way for more efficient, agile, and customer-focused network management.One notable example was the Deutsche Telekom and Google Cloud collaboration: RAN Guardian. Built using Gemini 2.0, this agent analyzes network behavior, identifies performance issues, and takes corrective measures to boost reliability, lower operational costs, and improve customer experience.As telecom networks become more complex, conventional rule-based automation struggles to handle real-time challenges. In contrast, agentic AI employs large language models (LLMs) and sophisticated reasoning frameworks to create intelligent systems capable of independent thought, action, and learning.What’s next in the world of AI?The innovation on show at MWC 2025 confirms that AI is rapidly transitioning from a research topic to a fundamental component of telecom and enterprise operations.  Wide-scale AI adoption is, however, a balancing act between cost, benefit, and risk management.Telcos are global by design, operating in multiple regions with varying business needs and local regulations. Ensuring service continuity and a good return on investment from AI-driven applications while carefully navigating regional laws around data privacy and security is no mean feat.If you want to learn more about incorporating AI into your business operations, we can help.Gcore Everywhere Inference significantly simplifies large-scale AI deployments by providing a simple-to-use serverless inference tool that abstracts the complexity of AI hardware and allows users to deploy and manage AI inference globally with just a few clicks. It enables fully automated, auto-scalable deployment of inference workloads across multiple geographic locations, making it easier to handle fluctuating requirements, thus simplifying deployment and maintenance.Learn more about Gcore Everywhere Inference

Everywhere Inference updates: new AI models and enhanced product documentation

This month, we’re rolling out new features and updates to enhance AI model accessibility, performance, and cost-efficiency for Everywhere Inference. From new model options to updated product documentation, here’s what’s new in February.Expanding the model libraryWe’ve added several powerful models to Gcore Everywhere Inference, providing more options for AI inference and fine-tuning. This includes three DeepSeek R1 options, state-of-the-art open-weight models optimized for various NLP tasks.DeepSeek’s recent rise represents a major shift in AI accessibility and enterprise adoption. Learn more about DeepSeek’s rise and what it means for businesses in our dedicated blog. Or, explore what DeepSeek’s popularity means for Europe.The following new models are available now in our model library:QVQ-72B-Preview: A large-scale language model designed for advanced reasoning and language understanding.DeepSeek-R1-Distill-Qwen-14B: A distilled version of DeepSeek R1, providing a balance between efficiency and performance for language processing tasks.DeepSeek-R1-Distill-Qwen-32B: A more robust distilled model designed for enterprise-scale AI applications requiring high accuracy and inference speed.DeepSeek-R1-Distill-Llama-70B: A distilled version of Llama 70B, offering significant improvements in efficiency while maintaining strong performance in complex NLP tasks.Phi-3.5-MoE-instruct: A high-quality, reasoning-focused model supporting multilingual capabilities with a 128K context length.Phi-4: A 14-billion-parameter language model excelling in mathematics and advanced language processing.Mistral-Small-24B-Instruct-2501: A 24-billion-parameter model optimized for low-latency AI tasks, performing competitively with larger models.These additions give developers more flexibility in selecting the right models for their use cases, whether they require large-scale reasoning, multimodal capabilities, or optimized inference efficiency. The Gcore model library offers numerous popular models available at the click of a button, but you can also bring your own custom model just as easily.Everywhere Inference product documentationTo help you get the most out of Gcore Everywhere Inference, we’ve expanded our product documentation. Whether you’re deploying AI models, fine-tuning performance, or scaling inference workloads, our docs provide in-depth guidance, API references, and best practices for seamless AI deployment.Choose Gcore for intuitive, powerful AI deploymentWith these updates, Gcore Everywhere Inference continues to provide the latest and best in AI inference. If you need speed, efficiency, and flexibility, get in touch. We’d love to explore how we can support and enhance your AI workloads.Get a complimentary AI consultation

How to optimize ROI with intelligent AI deployment

As generative AI evolves, the cost of running AI workloads has become a pressing concern. A significant portion of these costs will come from inference—the process of applying trained AI models to real-world data to generate responses, predictions, or decisions. Unlike training, which occurs periodically, inference happens continuously, handling vast amounts of user queries and data in real-time. This persistent demand makes managing inference costs a critical challenge, as inefficiencies can gradually drive up expenses.Cost considerations for AI inferenceOptimizing AI inference isn’t just about improving performance—it’s also about controlling costs. Several factors influence the total expense of running AI models at scale, from the choice of hardware to deployment strategies. As businesses expand their AI capabilities, they must navigate the financial trade-offs between speed, accuracy, and infrastructure efficiency.Several factors contribute to inference costs:Compute costs: AI inference relies heavily on GPUs and specialized hardware. These resources are expensive, and as demand grows, so do the associated costs of maintaining and scaling them.Latency vs. cost trade-off: Real-time applications like recommendation systems or conversational AI require ultra-fast processing. Achieving low latency often demands premium resources, creating a challenging trade-off between performance and cost.Operational overheads: Managing inference at scale can lead to rising expenses, particularly as query volumes increase. While cloud-based inference platforms offer flexibility and scalability, it’s important to implement cost-control measures to avoid unnecessary overhead. Optimizing workload distribution and leveraging adaptive scaling can help mitigate these costs.Balancing performance, cost, and efficiency in AI deploymentThe AI marketplace is teeming with different options and configurations. This can make critical decisions about inference optimization, like model selection, infrastructure, and operational management, feel overwhelming and easy to get wrong. We recommend these key considerations when navigating the choices available:Selecting the right model sizeAI models range from massive foundational models to smaller, task-specific in-house solutions. While large models excel in complex reasoning and general-purpose tasks, smaller models can deliver cost-efficient, accurate results for specific applications. Finding the right balance often involves:Experimenting during the proof-of-concept (POC) phase to test different model sizes and accuracy levels.Prioritizing smaller models where possible without compromising task performance.Matching compute with task requirementsNot every workload requires the same level of computational power. By matching hardware resources to model and task requirements, businesses can significantly reduce costs while maintaining performance.Optimizing infrastructure for cost-effective inferenceInfrastructure plays a pivotal role in determining inference efficiency. Here are three emerging trends:Leveraging edge inference: Moving inference closer to the data source can minimize latency and reduce reliance on more expensive centralized cloud solutions. This approach can optimize costs and improve regulatory compliance for data-sensitive industries.Repatriating compute: Many businesses are moving away from hyperscalers—large cloud providers like AWS, Google Cloud, and Microsoft Azure—to local, in-country cloud providers for simplified compliance and often lower costs. This shift enables tighter cost control and can mitigate the unpredictable expenses often associated with cloud platforms.Dynamic inference management tools: Advanced monitoring tools help track real-time performance and spending, enabling proactive adjustments to optimize ROI.Building a sustainable AI futureGcore’s solutions are designed to help you achieve the ideal balance between cost, performance, and scalability. Here’s how:Smart workload routing: Gcore’s intelligent routing technology ensures workloads are processed at the most suitable edge location. While proximity to the user is prioritized for lower latency and compliance, this approach can also save cost by keeping inference closer to data sources.Per-minute billing and cost tracking: Gcore’s platform offers unparalleled budget control with granular per-minute billing. This transparency allows businesses to monitor and optimize their spending closely.Adaptive scaling: Gcore’s adaptive scaling capabilities allocate just the right amount of compute power needed for each workload, reducing resource waste without compromising performance.How Gcore enhances AI inference efficiencyAs AI adoption grows, optimizing inference efficiency becomes critical for sustainable deployment. Carefully balancing model size, infrastructure, and operational strategies can significantly enhance your ROI.Gcore’s Everywhere Inference solution provides a reliable framework to achieve this balance, delivering cost-effective, high-performance AI deployment at scale.Explore Everywhere Inference

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.