Gcore named a Leader in the GigaOm Radar for AI Infrastructure!Get the report
  1. Home
  2. Developers
  3. What Is OWASP and What Is the OWASP Top 10?

What Is OWASP and What Is the OWASP Top 10?

  • By Gcore
  • October 11, 2023
  • 10 min read
What Is OWASP and What Is the OWASP Top 10?

The OWASP (Open Web Application Security Project) Top 10 is a list of the most critical and widespread application security risks, chosen by top security experts based on data from hundreds of thousands of applications. In this article, you’ll learn how to use the OWASP Top 10 to protect your web app from cyberthreats, how to test for these vulnerabilities, and how to avoid the OWASP Top 10 vulnerabilities.

What Is the OWASP Top 10? Why Does It Matter?

The OWASP Top 10 is a list of today’s ten most critical and widespread web app security risks. Top security experts update the list every few years based on data from hundreds of thousands of applications. Each risk includes a description, vulnerability examples, attack examples, guidance on how to avoid them, and references to more detailed resources. Public-facing applications were the most common initial attack vector in 2022, and almost 70% of applications have flaws that fall under the OWASP Top 10, meaning that most apps have cybersecurity flaws that could be remedied by paying attention to the OWASP Top 10.

The OWASP Top 10 isn’t the only application security framework—there are others more advanced and industry specific, such as ISO/IEC 27001 and NIST Cybersecurity Framework—and it’s not comprehensive, since it addresses only the most common vulnerabilities. But the OWASP Top 10 list is a good place to start with your application security program, since it covers the most common and dangerous vulnerabilities that you should fix first.

How Are the OWASP Top 10 Selected?

To choose and prioritize the top security risks, OWASP experts rely on two sources of information and go through the following steps.

  1. A call for data is publicized through social media channels.
  2. Security companies submit their data.
  3. Vulnerabilities are categorized based on their root cause.
  4. The OWASP team selects eight top risk categories based on incidence rate.
  5. Eight categories are ranked in order of risk based on generalized factors for exploitability and technical impact.
  6. Seasoned security practitioners are surveyed to identify the last two risks.
  7. The process is repeated every three to four years.

As mentioned, the OWASP Top 10 updates every 3-4 years. Here is what had changed in the last review of the list in 2021. The dotted arrows illustrate vulnerabilities that became a part of another related category. Solid arrows indicate a risk’s shift in priority ranking position. There are also three new risk categories.

Recent changes to the OWASP Top 10

How Businesses Use OWASP Top 10

Businesses can use the OWASP Top 10 in a number of ways to improve their web app security stance.

  • Awareness: OWASP Top 10 informs a broad audience including non-technical staff and executives. It allows developers, security experts, and managers to be on the same page about web app security priorities.
  • Training: OWASP Top 10 can be a training core for developers, security professionals, and other technical staff involved in software development.
  • Prioritization: OWASP Top 10 highlights which application security areas a business should fix first. By identifying the top risks from the list for your company, you’ll be empowered to allocate your resources appropriately.
  • Software development: The OWASP Top 10 is used in almost every stage of the software development cycle:
    • During the design phase, to ensure a team implements baseline security practices
    • In the software-development supply chain, to ensure the security of third-party components and services used to develop an application
    • As a checklist for secure code review
    • As a reference for unit testing, integration testing, and penetration testing
  • Security compliance: Health Insurance Portability and Accountability Act (HIPAA) or Payment Card Industry Data Security Standard (PCI DSS)-compliant organizations use the OWASP Top 10 as a checklist to measure the application security level of their partners.
  • Contractor requirements. Some companies include the OWASP Top 10 list in contractor requirements. For example, you can set security expectations for a software development company.
  • Hiring. Companies may employ the OWASP Top 10 to assess the candidate’s security knowledge.

The OWASP Top 10 List Overview

To better understand how the OWASP Top 10 vulnerabilities relate to your web application and how they can impact your business, let’s walk through each category.

RiskRisk explanation ExampleFactorsSpecific consequences (general below)
1. Broken access controlIneligible users can access resources or perform actions for which they don’t have permission. In the worst case scenario, the threat actor can modify a website’s content or take over the entire website.Various WordPress plugins are susceptible to this type of attack. Successful exploitation allows a hacker to take over a site with this or that plugin enabled.– Inadequate implementation of authentication and authorization controls that doesn’t correspond with potential risks for your specific business case. – Adding unverified third-party components to your software.- Outdated access control mechanisms, such as static permissions or single authentication point.
2. Cryptographic failuresCryptography protects your data by converting it into an unreadable and secure form. When the cryptography process fails, attackers can access your data.An example of this is one of the LastPass 2022 attacks. Some of their source code and technical information was stolen from their development environment. The hacker used the information to target an employee, obtained credentials and keys to decrypt some storage volumes, and accessed basic customer account information.– Outdated cryptographic algorithms; for example, Triple DES (Data Encryption Algorithm.) You can check for cryptographic algorithms’ updates on the NIST (National Institute of Standards and Technology) website. – Implementation of outdated key management practices (encryption keys that are not securely generated, stored, or protected.)- Use of default or weak keys, meaning they aren’t long and complex enough to resist brute-force attacks.- Unprotected communication channels e.g., HTTP instead of HTTPS.
3. Injection vulnerabilitiesA web application fails to filter, sanitize, or validate users’ commands or added data. Threat actors use such attacks to access sensitive data, manipulate the application’s behavior, or perform unauthorized actions.In spring 2023 attackers were able to install a web shell on the MOVEit Transfer application via SQL injection vulnerability and extract all data contained on the app.Poor user input validation that doesn’t correspond to best practices. For example, an application that allows users to upload files without checking file types.
4. Insecure designThe usage of code patterns and features that are insecure by default. For example, lack of input validation or embedding credentials (e.g., usernames, passwords, API keys) directly within the source code.A cinema chain provides discounts for group bookings accommodating up to fifteen individuals. Exploiting this vulnerability, malicious individuals could attempt to secure all available cinema seats in just a few clicks. When a website allows numerous reservations without mandating a deposit or credit card details, it becomes susceptible to significant revenue loss over time.Not all of the necessary application’s security controls are implemented throughout the software development process.– Limited business growth. Potential clients and partners may have concerns about a company’s security posture.

– Higher cost of remediation. To fix a vulnerability you might need fundamental changes.
5. Security misconfigurationThese arise from an insecurely configured application stack. Default account passwords, unnecessary features, and insecure settings in application frameworks and libraries are all potential openings for an attack.Users of Apache Tomcat, an open-source Java application server, had default username and password credentials. Threat actors targeted this misconfiguration and gained control over the server to spread Marai botnet malware.
A lack of knowledge about how to securely configure software used with an application. For example, failure to use configuration best practices for specific software.
6. Vulnerable and outdated componentsUsing outdated and/or unsupported software, tools, libraries, frameworks, and infrastructure. Hackers can use such components’ flaws to enter your perimeter.Open-source libraries are widespread because they increase go-to-market speed. However, they are often subject to attacks—hackers can reach multiple applications at once. Failing to timely update a library (which might be embedded in the core of your app) will result in a high risk of being hacked.A company doesn’t have a system and tools to monitor new versions of components they are using and those that are no longer updated.
7. Identification and authentication failuresWeak login and access control mechanisms. For instance, if a system accepts easy-to-guess passwords and lacks multi-factor authentication, it can lead to unauthorized access to users’ accounts and data breaches.In the 2023 Norton Life Lock case, over 6,000 accounts were breached due to staffing, meaning that users used the same passwords as in other systems with which they are registered. The company offered their users multi-factor authentication as an option, but it wasn’t obligatory.Insufficient identification and authentication mechanisms, like failing to implement specific authentication requirements for the relevant app type.– Users’ sensitive data stolen.

– Unauthorized transactions on the users’ behalf.
8. Software and data integrity failuresFailure to check the integrity and security of third-party components such as plugins, libraries, or modules. A threat actor can make unauthorized changes to the software or data, like introducing malicious code in an application.A high-profile example of the risk is SolarWinds case. Hackers added malicious code to one of their products used by 33,000 customers, including big corporations and government agencies. These malicious updates were sent to all clients.Failure to verify the source of software or data; failure to check new components for vulnerabilities.
9. Security logging and monitoring failuresFailure to track all activities within an application. Without proper monitoring, it becomes difficult to detect suspicious activities promptly or figure out the root cause of a breach and fix it. A hospital’s electronic health records system suffered a data breach because the security team failed to configure proper logging and monitoring. An insider accessed and stole patient records. The breach went unnoticed until the stolen data started surfacing on the dark web.– Auditable events not logged.

– Suspicious activity not monitored in application logs or API logs.

– Logs only stored locally, meaning it is easy to lose them and it’s impossible to gain a holistic view of the application’s security.
Prolonged data breaches, when attacks or malicious activities go undetected for an extended period.
10. Server side request forgery (SSRF) An application fetches data to the user without validating their URL request. A malicious user can send a crafted request to an unexpected destination in your system.A cloud security company Orca Security discovered numerous SSRF vulnerabilities in Azure with only minimal effort. Microsoft addressed the flaws.– Poor user input validation. For instance, an app doesn’t validate URL structure and restrict certain URL schemes; lacks URL whitelisting.

– Enabled HTTP redirections, so attackers may manipulate redirection URLs to access internal resources.

– A system allows raw responses from the server to the client.
Port scanning for vulnerable services or potential entry points into the network.

General OWASP Top 10 Causes and Implications

As well as the risk-specific implications in the table above, there are a number of causes and implications of the OWASP Top 10 that are relevant across the list.

General Causes

  • Application complexity: In complex apps, developers may unintentionally overlook some security risks. For example, multiple interdependencies and extensive functionality create such a risk.
  • Insufficient testing: Security testing needs to be sufficient or various vulnerabilities could be overlooked. Examples of insufficient testing include a company using only automated scanners without manual code review and penetration testing, or conducting testing on an app less than once a year.
  • Rapid development: If an app is developed unusually fast, certain vulnerabilities may not be sufficiently addressed.

General Business Consequences

  • Reputation and financial loss: Assuming they become public—as they almost certainly will—data breaches resulting from OWASP Top 10 vulnerabilities can damage a company’s reputation and lose customers’ trust. A natural result is financial loss, as customers take their business elsewhere.
  • Legal ramifications: Lawsuits may occur when affected users seek damages.
  • Compliance violations: If your business is subject to regulatory requirements such as HIPAA or PCI DSS, having OWASP Top 10 vulnerabilities in your app can lead to compliance violations. The Top 10 list intersects with these standards. For example, if personal health information is compromised, HIPAA compliance is violated, which means you are liable for financial penalties.
  • Downtime: System disruption and downtime may result when a breach occurs, and loss of service means loss of revenue and a damaged reputation as your customers turn to competitors. 

How to Test Your App for OWASP Top 10 Vulnerabilities

Let’s explore the most common ways to test your software for these top app security risks. To test for the whole OWASP Top 10 effectively, you should implement all three methods. Here, we list the testing methods from the most basic to the most advanced.

Automated Scanners: SAST and DAST

Both static application security testing (SAST) and dynamic application security testing (DAST) are automated vulnerability scanners. SAST is used during the development phase to review software code for common secure coding errors. Most SAST solutions can test your application for these OWASP Top 10 categories:

  • Injection flaws
  • Identification and authentication failures (limited vulnerabilities only)
  • Vulnerable and outdated components
  • Software and data integrity failures

DAST tools test a running application. Companies use DAST solutions in both testing and production environments. They attack software and document how it responds to malicious inputs. With DAST, you can test your app for:

  • Injection
  • Security misconfiguration (with limited capacity)
  • Identification and authentication failures
  • Broken access control

Secure Code Review

Secure code review is a small part of the code review process whereby reviewers manually inspect the source code to identify application vulnerabilities. A human reviewer can check for those OWASP Top 10 issues that aren’t fully testable automatically, like logical problems and design flaws. This method is most effective when used in combination with automated scanners (SAST and DAST.) A secure code review is conducted during the development phase and during major application updates—ideally, with every new feature and code change. 

Secure code review allows you to check for these OWASP Top 10 flaws: 

  • Broken access control
  • Injection flaws
  • Cryptographic failures 
  • Identification and authentication failures

Penetration Testing

Web application penetration testing (pen testing) involves simulating an attack on an application. Pen testing allows you to test for all OWASP Top 10 issues. The method isn’t a substitute for the methods discussed above. However, it allows you to get the most comprehensive and accurate information about OWASP Top 10 flaws in your application.
Ideally, you should invest in a web application penetration testing service during the testing stage of your software development to identify all vulnerabilities early on. After a critical application is in production, we recommend pen testing it with every major update or even more often, depending on your risk tolerance.

How to Mitigate OWASP Top 10 Risks

To decrease OWASP Top 10 risks, start with these general application security best practices that apply to the list as a whole.

Educate Your Development Team

Many OWASP Top 10 vulnerabilities arise because the development team hasn’t implemented certain security measures in an app code. Security isn’t developers’ main focus, so they may consider it extra work that will go unnoticed, or they might not be up to date on best practices.

Upskilling your team with an OWASP-specific course is a good first step on the way to diminishing OWASP Top 10 risks. When choosing a training solution make sure that the OWASP Top 10 course:

  • Is engaging, relevant to your specific projects, and actionable, so that your developers can implement the learnings right away.
  • Clearly and credibly explains the importance of secure coding for developers’ work.

Conduct training regularly, since new vulnerabilities, secure coding practices, and tools continuously arise.

Motivate Developers To Implement Secure Coding Practices

After training, your goal as a manager is to enable change in your development team’s working routine. Here is what you can do about it:

  • Involve internal or external security experts to help developers prioritize which vulnerabilities to fix first. 
  • Develop and support security champions—team members who are application security enthusiasts.
  • Make application security a factor in assessing the development team’s performance.
  • Integrate security testing into developer workflows.

Prioritize The Risks For Your Specific Case

OWASP Top 10 is listed in risk-based order. However, each company’s security priorities may differ. You want to fix flaws that are most critical specifically to you. For example, despite broken access control being a top-ranking risk based on OWASP data, it will have lower priority for internal-only applications. Here’s how to prioritize OWASP Top 10 flaws for your company:

  1. Take the list of vulnerabilities you found during testing for OWASP Top 10. 
  2. Identify vulnerabilities that affect key business processes, mission-critical systems, or sensitive data.
  3. Rank them based on how easy it is to break through your controls.
  4. Take into account a vulnerability category position in the OWASP Top 10 list.

Use Application Security Tools

Using security tools decreases human errors and makes it easier for your development team to achieve a good level of application security. Here are the tool types we recommend using.

  • A web application firewall (WAF) filters software traffic and stops suspicious requests or potential attacks. For example, a WAF can prevent injection risks by blocking malicious inputs. Here is how it works, using Gcore WAF as an example:
  • Security libraries help developers implement secure coding practices without reinventing the wheel. They are prebuilt software components with built-in security measures. They include input validation libraries, access control libraries, and authentication libraries.
  • Dependency scanners check for common vulnerabilities in open-source components of your application. Such solutions review your application for vulnerable components based on updated threats and scan newly added components for known vulnerabilities.
  • Configuration management (CM) tools help to ensure that machines, software packages, and updates are configured and installed correctly. CM tools may also provide version control and change control.

Continuously Test Your Software

Test your application at multiple points during the development cycle and after each major software update as a minimum. The precise testing frequency depends on your business’ risk tolerance, development practices, application complexity, regulatory requirements, and the evolving threat landscape.

Conclusion

Compliance with OWASP Top 10 (and other security frameworks) is the basis for application security. However, the OWASP Top 10 doesn’t cover all existing vulnerabilities and is updated only every 3–4 years, while new attack techniques come through far more frequently. Your business and application specifics will determine exactly how you ensure compliance with the OWASP Top 10, and this guide is a good starting point to ensuring your web app’s security corresponds with the list.

To protect your business fully, save money, and effectively prioritize risks, consider outsourcing your web application security to experts. The Gcore penetration testing team can help you identify priority risks for your organization including and beyond the OWASP Top 10, and our WAAP product (Web Application Firewall and API Protection) mitigates any and all security threats to your app.

Try for free

Related articles

Flexible DDoS mitigation with BGP Flowspec cover image

Flexible DDoS mitigation with BGP Flowspec

For customers who understand their own network traffic patterns, rigid DDoS protection can be more of a limitation than a safeguard. That’s why Gcore supports BGP Flowspec: a flexible, standards-based method for defining granular filters that block or rate-limit malicious traffic in real time…before it reaches your infrastructure.In this article, we’ll walk through:What Flowspec is and how it worksThe specific filters and actions Gcore supportsCommon use cases, with example rule definitionsHow to activate and monitor Flowspec in your environmentWhat is the BGP Flowspec?BGP Flowspec (RFC 8955) extends Border Gateway Protocol to distribute traffic filtering rules alongside routing updates. Instead of static ACLs or reactive blackholing, Flowspec enables near-instantaneous propagation of mitigation rules across networks.BGP tells routers how to reach IP prefixes across the internet. With Flowspec, those same BGP announcements can now carry rules, not just routes. Each rule describes a pattern of traffic (e.g., TCP SYN packets >1000 bytes from a specific subnet) and what action to take (drop, rate-limit, mark, or redirect).What are the benefits of the BGP Flowspec?Most traditional DDoS protection services react to threats after they start, whether by blackholing traffic to a target IP, redirecting flows to a scrubbing center, or applying rigid, static filters. These approaches can block legitimate traffic, introduce latency, or be too slow to respond to fast-evolving attacks.Flowspec offers a more flexible alternative.Proactive mitigation: Instead of waiting for attacks, you can define known-bad traffic patterns ahead of time and block them instantly. Flowspec lets experienced operators prevent incidents before they start.Granular filtering: You’re not limited to blocking by IP or port. With Flowspec, you can match on packet size, TCP flags, ICMP codes, and more, enabling fine-tuned control that traditional ACLs or RTBH don’t support.Edge offloading: Filtering happens directly on Gcore’s routers, offloading your infrastructure and avoiding scrubbing latency.Real-time updates: Changes to rules are distributed across the network via BGP and take effect immediately, faster than manual intervention or standard blackholing.You still have the option to block traffic during an active attack, but with Flowspec, you gain the flexibility to protect services with minimal disruption and greater precision than conventional tools allow.Which parts of the Flowspec does Gcore implement?Gcore supports twelve filter types and four actions of the Flowspec.Supported filter typesGcore supports all 12 standard Flowspec match components.Filter FieldDescriptionDestination prefixTarget subnet (usually your service or app)Source prefixSource of traffic (e.g., attacker IP range)IP protocolTCP, UDP, ICMP, etc.Port / Source portMatch specific client or server portsDestination portMatch destination-side service portsICMP type/codeFilter echo requests, errors, etc.TCP flagsFilter packets by SYN, ACK, RST, FIN, combinationsPacket lengthFilter based on payload sizeDSCPQuality of service code pointFragmentMatch on packet fragmentation characteristicsSupported actionsGcore DDoS Protection supports the following Flowspec actions, which can be triggered when traffic matches a specific filter:ActionDescriptionTraffic-rate (0x8006)Throttle/rate limit traffic by byte-per-second rateredirectRedirect traffic to alternate location (e.g., scrubbing)traffic-markingApply DSCP marks for downstream classificationno-action (drop)Drop packets (rate-limit 0)Rule orderingRFC 5575 defines the implicit order of Flowspec rules. The crucial point is that more specific announcements take preference, not the order in which the rules are propagated.Gcore also respects Flowspec rule ordering per RFC 5575. More specific filters override broader ones. Future support for Flowspec v2 (with explicit ordering) is under consideration, pending vendor adoption.Blackholing and extended blackholing (eBH)Remote-triggered blackhole (RTBH) is a standardized protection method that the client manages via BGP by analyzing traffic, identifying the direction of the attack (i.e., the destination IP address). This method protects against volumetric attacks.Customers using Gcore IP Transit can trigger immediate blackholing for attacked prefixes via BGP, using the well-known blackhole community tag 65000:666. All traffic to that destination IP is dropped at Gcore’s edge.The list of supported BGP communities is available here.BGP extended blackholeExtended blackhole (eBH) allows for more granular blackholing that does not affect legitimate traffic. For customers unable to implement Flowspec directly, Gcore supports eBH. You announce target prefixes with pre-agreed BGP communities, and Gcore translates them into Flowspec mitigations.To configure this option, contact our NOC at noc@gcore.lu.Monitoring and limitationsGcore can support several logging transports, including mail and Slack.If the number of Flowspec prefixes exceeds the configured limit, Gcore DDoS Protection stops accepting new announcements, but BGP sessions and existing prefixes will stay active. Gcore will receive a notification that you reached the limit.How to activateActivation takes just two steps:Define rules on your edge router using Flowspec NLRI formatAnnounce rules via BGP to Gcore’s intermediate control planeThen, Gcore validates and propagates the filters to border routers. Filters are installed on edge devices and take effect immediately.If attack patterns are unknown, you’ll first need to detect anomalies using your existing monitoring stack, then define the appropriate Flowspec rules.Need help activating Flowspec? Get in touch via our 24/7 support channels and our experts will be glad to assist.Set up GRE and benefit from Flowspec today

Securing AI from the ground up: defense across the lifecycle

As more AI workloads shift to the edge for lower latency and localized processing, the attack surface expands. Defending a data center is old news. Now, you’re securing distributed training pipelines, mobile inference APIs, and storage environments that may operate independently of centralized infrastructure, especially in edge or federated learning contexts. Every stage introduces unique risks. Each one needs its own defenses.Let’s walk through the key security challenges across each phase of the AI lifecycle, and the hardening strategies that actually work.PhaseTop threatsHardening stepsTrainingData poisoning, leaksValidation, dataset integrity tracking, RBAC, adversarial trainingDevelopmentModel extraction, inversionRate limits, obfuscation, watermarking, penetration testingInferenceAdversarial inputs, spoofed accessInput filtering, endpoint auth, encryption, TEEsStorage and deploymentModel theft, tamperingEncrypted containers, signed builds, MFA, anomaly monitoringTraining: your model is only as good as its dataThe training phase sets the foundation. If the data going in is poisoned, biased, or tampered with, the model will learn all the wrong lessons and carry those flaws into production.Why it mattersData poisoning is subtle. You won’t see a red flag during training logs or a catastrophic failure at launch. These attacks don’t break training, they bend it.A poisoned model may appear functional, but behaves unpredictably, embeds logic triggers, or amplifies harmful bias. The impact is serious later in the AI workflow: compromised outputs, unexpected behavior, or regulatory non-compliance…not due to drift, but due to training-time manipulation.How to protect itValidate datasets with schema checks, label audits, and outlier detection.Version, sign, and hash all training data to verify integrity and trace changes.Apply RBAC and identity-aware proxies (like OPA or SPIFFE) to limit who can alter or inject data.Use adversarial training to improve model robustness against manipulated inputs.Development and testing: guard the logicOnce you’ve got a trained model, the next challenge is protecting the logic itself: what it knows and how it works. The goal here is to make attacks economically unfeasible.Why it mattersModels encode proprietary logic. When exposed via poorly secured APIs or unprotected inference endpoints, they’re vulnerable to:Model inversion: Extracting training dataExtraction: Reconstructing logicMembership inference: Revealing whether a datapoint was in trainingHow to protect itApply rate limits, logging, and anomaly detection to monitor usage patterns.Disable model export by default. Only enable with approval and logging.Use quantization, pruning, or graph obfuscation to reduce extractability.Explore output fingerprinting or watermarking to trace unauthorized use in high-value inference scenarios.Run white-box and black-box adversarial evaluations during testing.Integrate these security checks into your CI/CD pipeline as part of your MLOps workflow.Inference: real-time, real riskInference doesn’t get a free pass because it’s fast. Security needs to be just as real-time as the insights your AI delivers.Why it mattersAdversarial attacks exploit the way models generalize. A single pixel change or word swap can flip the classification.When inference powers fraud detection or autonomous systems, a small change can have a big impact.How to protect itSanitize input using JPEG compression, denoising, or frequency filtering.Train on adversarial examples to improve robustness.Enforce authentication and access control for all inference APIs—no open ports.Encrypt inference traffic with TLS. For added privacy, use trusted execution environments (TEEs).For highly sensitive cases, consider homomorphic encryption or SMPC—strong but compute-intensive solutions.Check out our free white paper on inference optimization.Storage and deployment: don’t let your model leakOnce your model’s trained and tested, you’ve still got to deploy and store it securely—often across multiple locations.Why it mattersUnsecured storage is a goldmine for attackers. With access to the model binary, they can reverse-engineer, clone, or rehost your IP.How to protect itStore models on encrypted volumes or within enclaves.Sign and verify builds before deployment.Enforce MFA, RBAC, and immutable logging on deployment pipelines.Monitor for anomalous access patterns—rate, volume, or source-based.Edge strategy: security that moves with your AIAs AI moves to the edge, centralized security breaks down. You need protection that operates as close to the data as your inference does.That’s why we at Gcore integrate protection into AI workflows from start to finish:WAAP and DDoS mitigation at edge nodes—not just centralized DCs.Encrypted transport (TLS 1.3) and in-node processing reduce exposure.Inline detection of API abuse and L7 attacks with auto-mitigation.180+ global PoPs to maintain consistency across regions.AI security is lifecycle securityNo single firewall, model tweak, or security plugin can secure AI workloads in isolation. You need defense in depth: layered, lifecycle-wide protections that work at the data layer, the API surface, and the edge.Ready to secure your AI stack from data to edge inference?Talk to our AI security experts

3 ways to safeguard your website against DDoS attacks—and why it matters

DDoS (distributed denial-of-service) attacks are a type of cyberattack in which a hacker overwhelms a server with an excessive number of requests, causing the server to stop functioning correctly and denying access to legitimate users. The volume of these types of attacks is increasing, with a 56% year-on-year rise recorded in late 2024, driven by factors including the growing availability of AI-powered tools, poorly secured IoT devices, and geopolitical tensions worldwide.Fortunately, there are effective ways to defend against DDoS attacks. Because these threats can target different layers of your network, a single tool isn’t enough, and a multi-layered approach is necessary. Businesses need to protect both the website itself and the infrastructure behind it. This article explores the three key security solutions that work together to protect your website—and the costly consequences of failing to prepare.The consequences of not protecting your website against DDoS attacksIf your website isn’t sufficiently protected, DDoS attacks can have severe and far-reaching impacts on your website, business, and reputation. They not only disrupt the user experience but can spiral into complex, costly recovery efforts. Safeguarding your website against DDoS attacks is essential to preventing the following serious outcomes:Downtime: DDoS attacks can exhaust server resources (CPU, RAM, throughput), taking websites offline and making them unavailable to end users.Loss of business/customers: Frustrated users will leave, and many won’t return after failed checkouts or broken sessions.Financial losses: By obstructing online sales, DDoS attacks can cause businesses to suffer substantial loss of revenue.Reputational damage: Websites or businesses that suffer repeated unmitigated DDoS attacks may cause customers to lose trust in them.Loss of SEO rankings: A website could lose its hard-won SEO ranking if it experiences extended downtime due to DDoS attacks.Disaster recovery costs: DDoS disaster recovery costs can escalate quickly, encompassing hardware replacement, software upgrades, and the need to hire external specialists.Solution #1: Implement dedicated DDoS protection to safeguard your infrastructureAdvanced DDoS protection measures are customized solutions designed to protect your servers and infrastructure against DDoS attacks. DDoS protection helps defend against malicious traffic designed to crash servers and interrupt service.Solutions like Gcore DDoS Protection continuously monitor incoming traffic for suspicious patterns, allowing them to automatically detect and mitigate attacks in real time. If your resources are attacked, the system filters out harmful traffic before it reaches your servers. This means that real users can access your website without interruption, even during an attack.For example, a financial services provider could be targeted by cybercriminals attempting to disrupt services with a large-scale volumetric DDoS attack. With dedicated DDoS protection, the provider can automatically detect and filter out malicious traffic before it impacts users. Customers can continue to log in, check balances, and complete transactions, while the system adapts to the evolving nature of the attack in the background, maintaining uninterrupted service.The protection scales with your business needs, automatically adapting to higher traffic loads or more complex attacks. Up-to-date reports and round-the-clock technical support allow you to keep track of your website status at all times.Solution #2: Enable WAAP to protect your websiteGcore WAAP (web application and API protection) is a comprehensive solution that monitors, detects, and mitigates cyber threats, including DDoS layer 7 attacks. WAAP uses AI-driven algorithms to monitor, detect, and mitigate threats in real time, offering an additional layer of defense against sophisticated attackers. Once set up, the system provides powerful tools to create custom rules and set specific triggers. For example, you can specify the conditions under which certain requests should be blocked, such as sudden spikes in API calls or specific malicious patterns common in DDoS attacks.For instance, an e-commerce platform during a major sale like Black Friday could be targeted by bots attempting to flood the site with fake login or checkout requests. WAAP can differentiate between genuine users and malicious bots by analyzing traffic patterns, rate of requests, and attack behaviors. It blocks malicious requests so that real customers can continue to complete transactions without disruption.Solution #3: Connect to a CDN to strengthen defenses furtherA trustworthy content delivery network (CDN) is another valuable addition to your security stack. A CDN is a globally distributed server network that ensures efficient content delivery. CDNs spread traffic across multiple global edge servers, reducing the load on the origin server. During a DDoS attack, a CDN with DDoS protection can protect servers and end users. It filters traffic at the edge, blocking threats before they ever reach your infrastructure. Caching servers within the CDN network then deliver the requested content to legitimate users, preventing network congestion and denial of service to end users.For instance, a gaming company launching a highly anticipated multiplayer title could face a massive surge in traffic as players around the world attempt to download and access the game simultaneously. This critical moment also makes the platform a prime target for DDoS attacks aimed at disrupting the launch. A CDN with integrated DDoS protection can absorb and filter out malicious traffic at the edge before it reaches the core infrastructure. Legitimate players continue to enjoy fast downloads and seamless gameplay, while the origin servers remain stable and protected from overload or downtime.In addition, Super Transit intelligently routes your traffic via Gcore’s 180+ point-of-presence global network, proactively detecting, mitigating, and filtering DDoS attacks. Even mid-attack, users experience seamless access with no interruptions. They also benefit from an enhanced end-user experience, thanks to shorter routes between users and servers that reduce latency.Taking the next steps to protect your websiteDDoS attacks pose significant threats to websites, but a proactive approach is the best way to keep your site online, secure, and resilient. Regardless of your industry or location, it’s crucial to take action to safeguard your website and maintain its uninterrupted availability.Enabling Gcore DDoS protection is a simple and proven way to boost your digital infrastructure’s resiliency against different types of DDoS attacks. Gcore DDoS protection also integrates with other security solutions, including Gcore WAAP, which protects your website and CDNs. These tools work seamlessly together to provide advanced website protection, offering improved security and performance in one intuitive platform.If you’re ready to try Gcore Edge Security, fill in the form below and one of our security experts will be in touch for a personalized consultation.

From reactive to proactive: how AI is transforming WAF cybersecurity solutions

While digital transformation in recent years has driven great innovation, cyber threats have changed in parallel, evolving to target the very applications businesses rely on to thrive. Traditional web application security measures, foundational as they may be, are no longer effective in combating sophisticated attacks in time. Enter the next generation of WAFs (web application firewalls) powered by artificial intelligence.Next-generation WAFs, often incorporated into WAAP solutions, do much more than respond to threats; instead, they will use AI and ML-powered techniques to predict and neutralize threats in real time. This helps businesses to stay ahead of bad actors by securing applications, keeping valuable data safe, and protecting hard-earned brand reputations against ever-present dangers in an expanding digital world.From static to AI-powered web application firewallsTraditional WAFs were relied on to protect web applications against known threats, such as SQL injection and cross-site scripting. They’ve done a great job as the first line of defense, but their reliance on static rules and signature-based detection means they struggle to keep up with today’s fast-evolving cyber threats. To understand in depth why traditional WAFs are no longer sufficient in today’s threat landscape, read our ebook.AI and ML have already revolutionized what a WAF can do. AI/ML-driven WAFs can examine vast streams of traffic data and detect patterns, including new threats, right at the emergence stage. The real-time adaptability that this allows is effective even against zero-day attacks and complex new hacking techniques.How AI-powered WAP proactively stops threatsOne of the most significant advantages of AI/ML-powered WAFs is proactive identification and prevention capabilities. Here's how this works:Traffic pattern analysis: AI systems monitor both incoming and outgoing traffic to set up baselines for normal behavior. This can then allow for the detection of anomalies that could show a zero-day attack or malicious activity.Real-time decision making: Machine learning models keep learning from live traffic and detect suspicious activities on the go sans waiting for any updates in the rule set. This proactive approach ensures that businesses are guarded from emerging threats before they escalate.Heuristic tagging and behavioral insights: Advanced heuristics used by AI-driven systems tag everything from sessionless clients to unusual request frequencies. It helps administrators classify potential bots or automated attacks much faster.Ability to counter zero-day attacks: Traditional WAF solutions can only mitigate attacks that are already in the process of accessing sensitive areas. AI/ML-powered WAFs, on the other hand, can use data to identify and detect patterns indicative of future attacks, stopping attackers in their tracks and preventing future damage.Intelligent policy management: Adaptive WAFs detect suspicious activity and alert users to misconfigured security policies accordingly. They reduce the need for manual configuration while assuring better protection.Integrated defense layers: One of the strongest features of AI/ML-powered systems is the ease with which they integrate other layers of security, including bot protection and DDoS mitigation, into a connected architecture that protects several attack surfaces.User experience and operational impactAI-driven WAFs improve the day-to-day operations of security teams by transforming how they approach threat management. With intuitive dashboards and clearly presented analytics, as offered by Gcore WAAP, these tools empower security professionals to quickly interpret complex data, streamline decision-making, and respond proactively to threats.Instead of manually analyzing vast amounts of traffic data, teams now receive immediate alerts highlighting critical security events, such as abnormal IP behaviors or unusual session activity. Each alert includes actionable recommendations, enabling rapid adjustments to security policies without guesswork or delay.By automating the identification of sophisticated threats such as credential stuffing, scraping, and DDoS attacks, AI-powered solutions significantly reduce manual workloads. Advanced behavioral profiling and heuristic tagging pinpoint genuine threats with high accuracy, allowing security teams to concentrate their efforts where they're most needed.Embracing intelligent security with Gcore’s AI-driven WAAPOur AI-powered WAAP solution provides intelligent, interrelated protection to empower companies to actively outperform even the most sophisticated, ever-changing threats by applying advanced traffic analysis, heuristic tagging, and adaptive learning. With its cross-domain functionality and actionable security insights, this solution stands out as an invaluable tool for both security architects and strategic decision-makers. It combines innovation and practicality to address the needs of modern businesses.Curious to learn more about WAAP? Check out our ebook for cybersecurity best practices, the most common threats to look out for, and how WAAP can safeguard your businesses’ digital assets. Or, get in touch with our team to learn more about Gcore WAAP.Learn why WAAP is essential for modern businesses with a free ebook

How AI helps prevent API attacks

APIs have become an integral part of modern digital infrastructure, and it can be easy to take their security for granted. But, unfortunately, APIs are a popular target for attackers. Hackers can use APIs to access crucial data and services, and breaching APIs allows attackers to bypass traditional security controls.Most companies focus on speed of development and deployment ahead of security when crafting APIs, making them vulnerable to issues like insecure authentication, poor validation, or misconfigured endpoints, which attackers can abuse. Additionally, the interconnected nature of APIs creates multiple endpoints, widening the attack surface and creating additional points of entry that attackers can exploit.As threats evolve and the attack surface grows to include more API endpoints, integrating AI threat detection and mitigation is an absolute must for businesses to take serious, deliberate action against API cyberattacks. Let’s find out why.Staying ahead of zero-day API attacksOf all the cyber attacks that commonly threaten APIs, zero-day attacks, leveraging unknown vulnerabilities, are probably the toughest to defeat. Traditional solutions rely more on the existence of preconfigured rules or signatures along with human interference to detect and block such attacks. This approach often fails against novel threats and can block legitimate traffic, leaving applications vulnerable and making APIs inaccessible to users.APIs must balance between allowing legitimate users access and maintaining security. AI and ML technologies excel at identifying zero-day attacks based on pattern and behavior analysis rather than known signatures. For instance, heuristic algorithms can detect anomalies, such as sudden spikes in unusual traffic or behaviors indicative of malicious intent.Consider the following example: A certain IP address makes an abnormally large number of requests to a rarely accessed endpoint. Even without prior knowledge of the IP or attack vector, an AI/ML-enhanced solution can flag the activity as suspicious and block it proactively. Using minimal indicators, such as frequency patterns or traffic anomalies, AI can stop attackers before they fully exploit vulnerabilities. Additionally, this means that only suspicious IPs are blocked, and legitimate users can continue to access APIs unimpeded.The risks of shadow APIsOne of the biggest risks is shadow APIs, which are endpoints that exist but aren't documented or monitored. These can arise from configuration mistakes, forgotten updates, or even rogue development practices. These unknown APIs are the ideal target for Layer 7 attacks, as they are often left undefended, making them easy targets.AI-powered API discovery tools map both known and unknown API endpoints, enabling the grouping and management of these endpoints so sensitive APIs can be properly secured. This level of visibility is critical to securing systems against API-targeting attacks; without it, businesses are left in the dark.API discovery as a critical security practiceWAAP with AI/ML capabilities excels in API security because it accurately checks and analyzes API traffic. The Gcore API discovery engine offers 97 to 99 percent accuracy, mapping APIs in users’ domains and using data to recommend policies to help secure APIs.How heuristics enhance WAAP AI capabilities to protect APIsWhile AI and ML form the backbone of modern WAAPs, heuristic methods complement them in enhancing detection accuracy. Heuristics allow the system to inspect granular behaviors, such as mouse clicks or scrolling patterns, which distinguish legitimate users from bots.For example, most scraping attacks involve automated scripts that interact with APIs in predictable and repetitive manners. In those cases, WAAP can use request patterns or user action monitoring to identify the script with high accuracy. Heuristics may define bots by checking how users interact with page elements, such as buttons or forms, and flagging those that behave unnaturally.This layered approach ensures that the most sophisticated automated attack attempts are caught in the net and mitigated without affecting legitimate traffic.Protect your APIs with the click of a button using Gcore WAAPAI offers proactive, intelligent solutions that can address the modern complexities of cybersecurity. These technologies empower organizations to secure APIs against even the most sophisticated threats, including zero-day vulnerabilities and undiscovered APIs.Interested in protecting your APIs with WAAP? Download our ebook to discover cybersecurity best practices, the most prevalent threats, and how WAAP can protect your business’s digital infrastructure, including APIs. Or, reach out to our team to learn more about Gcore WAAP.Discover why WAAP is a must-have for API protection

11 simple tips for securing your APIs

A vast 84% of organizations have experienced API security incidents in the past year. APIs (application programming interfaces) are the backbone of modern technology, allowing seamless interaction between diverse software platforms. However, this increased connectivity comes with a downside: a higher risk of security breaches, which can include injection attacks, credential stuffing, and L7 DDoS attacks, as well as the ever-growing threat of AI-based attacks.Fortunately, developers and IT teams can implement DIY API protection. Mitigating vulnerabilities involves using secure coding techniques, conducting thorough testing, and applying strong security protocols and frameworks. Alternatively, you can simply use a WAAP (web application and API protection) solution for specialized, one-click, robust API protection.This article explains 11 practical tips that can help protect your APIs from security threats and hacking attempts, with examples of commands and sample outputs to provide API security.#1 Implement authentication and authorizationUse robust authentication mechanisms to verify user identity and authorization strategies like OAuth 2.0 to manage access to resources. Using OAuth 2.0, you can set up a token-based authentication system where clients request access tokens using credentials. # Requesting an access token curl -X POST https://yourapi.com/oauth/token \ -d "grant_type=client_credentials" \ -d "client_id=your_client_id" \ -d "client_secret=your_client_secret" Sample output: { "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9...", "token_type": "bearer", "expires_in": 3600 } #2 Secure communication with HTTPSEncrypting data in transit using HTTPS can help prevent eavesdropping and man-in-the-middle attacks. Enabling HTTPS may involve configuring your web server with SSL/TLS certificates, such as Let’s Encrypt with nginx. sudo certbot --nginx -d yourapi.com #3 Validate and sanitize inputValidating and sanitizing all user inputs protects against injection and other attacks. For a Node.js API, use express-validator middleware to validate incoming data. app.post('/api/user', [ body('email').isEmail(), body('password').isLength({ min: 5 }) ], (req, res) => { const errors = validationResult(req); if (!errors.isEmpty()) { return res.status(400).json({ errors: errors.array() }); } // Proceed with user registration }); #4 Use rate limitingLimit the number of requests a client can make within a specified time frame to prevent abuse. The express-rate-limit library implements rate limiting in Express.js. const rateLimit = require('express-rate-limit'); const apiLimiter = rateLimit({ windowMs: 15 * 60 * 1000, // 15 minutes max: 100 }); app.use('/api/', apiLimiter); #5 Undertake regular security auditsRegularly audit your API and its dependencies for vulnerabilities. Runnpm auditin your Node.js project to detect known vulnerabilities in your dependencies.  npm audit Sample output: found 0 vulnerabilities in 1050 scanned packages #6 Implement access controlsImplement configurations so that users can only access resources they are authorized to view or edit, typically through roles or permissions. The two more common systems are Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC) for a more granular approach.You might also consider applying zero-trust security measures such as the principle of least privilege (PoLP), which gives users the minimal permissions necessary to perform their tasks. Multi-factor authentication (MFA) adds an extra layer of security beyond usernames and passwords.#7 Monitor and log activityMaintain comprehensive logs of API activity with a focus on both performance and security. By treating logging as a critical security measure—not just an operational tool—organizations can gain deeper visibility into potential threats, detect anomalies more effectively, and accelerate incident response.#8 Keep dependencies up-to-dateRegularly update all libraries, frameworks, and other dependencies to mitigate known vulnerabilities. For a Node.js project, updating all dependencies to their latest versions is vital. npm update #9 Secure API keysIf your API uses keys for access, we recommend that you make sure that they are securely stored and managed. Modern systems often utilize dynamic key generation techniques, leveraging algorithms to automatically produce unique and unpredictable keys. This approach enhances security by reducing the risk of brute-force attacks and improving efficiency.#10 Conduct penetration testingRegularly test your API with penetration testing to identify and fix security vulnerabilities. By simulating real-world attack scenarios, your organizations can systematically identify vulnerabilities within various API components. This proactive approach enables the timely mitigation of security risks, reducing the likelihood of discovering such issues through post-incident reports and enhancing overall cybersecurity resilience.#11 Simply implement WAAPIn addition to taking the above steps to secure your APIs, a WAAP (web application and API protection) solution can defend your system against known and unknown threats by consistently monitoring, detecting, and mitigating risks. With advanced algorithms and machine learning, WAAP safeguards your system from attacks like SQL injection, DDoS, and bot traffic, which can compromise the integrity of your APIs.Take your API protection to the next levelThese steps will help protect your APIs against common threats—but security is never one-and-done. Regular reviews and updates are essential to stay ahead of evolving vulnerabilities. To keep on top of the latest trends, we encourage you to read more of our top cybersecurity tips or download our ultimate guide to WAAP.Implementing specialized cybersecurity solutions such as WAAP, which combines web application firewall (WAF), bot management, Layer 7 DDoS protection, and API security, is the best way to protect your assets. Designed to tackle the complex challenges of API threats in the age of AI, Gcore WAAP is an advanced solution that keeps you ahead of security threats.Discover why WAAP is a non-negotiable with our free ebook

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.